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FOR k-E TURBULENCE MODEL 
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SUMMARY 

In this paper Roe’s flux-difference splitting is applied for the solution of Reynolds-averaged Navier-Stokes 
equations. Turbulence is modelled using a low-Reynolds number form of the k-c tubulence model. The coupling 
between the turbulence kinetic energy equation and the inviscid part of the flow equations is taken into account. 
The equations are solved with a diagonally dominant alternating direction implicit (DDADI) factorized implicit 
time integration method. A multigrid algorithm is used to accelerate the convergence. To improve the stability 
some modifications are needed in comparison with the application of an algebraic turbulence model. The 
developed method is applied to three different test cases. These cases show the efficiency of the algorithm, but the 
results are only marginally better than those obtained with algebraic models. 
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1. INTRODUCTION 

During the past two decades k-6 turbulence modelling’ has become a standard procedure in solving 
incompressible, turbulent flows in industrial applications. In aerodynamical applications with a high 
Reynolds number the use of the k-E model has not been a particularly common approach. Instead, 
simple algebraic models like the Baldwin-Lomax model2 are popular. Algebraic models have gained 
popularity because the results are often comparable with the results of more complicated models. In 
addition, the standard k-E approach cannot be extended onto the wall surface; inside the boundary layer 
a low-Reynolds number modification is required. The turbulence transport equations contain stiff 
source terms. Consequently, the implementation of the model into compressible flow solvers is a 
difficult task. Additional numerical difficulties arise because with a high Reynolds number, turbulence 
is significant only inside a thin boundary layer and the turbulence quantities may vary by orders of 
magnitude within a very short distance. 

However, the application of the algebraic models for complex geometries or wakes is not 
straightforward and often the resulting turbulent viscosities are not physically realistic. Special care 
must be taken when an algebraic model is applied for a new complex flow case. Usually a turbulence 
model based on differential equations is a more natural approach, although the results are not always 
better than those obtained with tuned algebraic modelling. Because of this, in recent years attention has 
been paid to the k-E model in aerodynamic simulations also. There are many applications for turbulent 
flows over projectiles, see e.g. Reference 3. The k-E model forms the basis for the algebraic Reynolds 
stress model. With the algebraic Reynolds stress model promising results have been obtained for flows 
over an airfoil.4 
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In this study, Chien’s low-Reynolds number k-E model5 is coupled with a compressible flow solver 
based on Roe’s method.6 The objective of the study has been to extend the efficient solution methods 
of the existing Navier-Stokes solver for the turbulence transport equations, and to couple these with 
the flow equations. The developed scheme utilizes a finite-volume approach with a cell-centred 
location of the dependent variables. The solution is based on a DDADI-factorized implicit time 
integration method.’ The code utilizes a multigrid V-cycle for the acceleration of convergence and is 
able to handle multiblock grids. The main features of the solution method are described in Reference 8. 

The turbulence equations and the flow equations are coupled via the turbulent viscosity and also via 
the (2pk/3) term in the momentum and energy equation.’ The coupling through the kinetic energy term 
is usually In the present study, this coupling is taken into account in applying Roe’s 
approximative Riemann solver, and coupling is also present in the implicit stage of the solution. This 
coupling is fairly trivial and was taken into account for the sake of completeness, although in most 
cases its effect on the solution is small. Because the turbulence equations are included, modifications 
are required in the original scheme. The main emphasis of this paper is on these modifications. In the 
following, the basic features of the developed algorithm are described in detail. The method is applied 
for flows over a flat plate, the NACA 0012 airfoil and a delta wing. 

2. NUMERICAL METHOD 

2.1. Governing equations 

dissipation ( E )  of turbulence can be written in the following form 
The Reynolds-averaged Navier-Stokes equations, and the equations for the kinetic energy (k) and 

= Q, 
au a(F - F,) a(G - G,) + a(H - Hv) 

?Y az 
-+ + at ax 

where U =  (p, pu, pv, pw, E, pk ,  p ~ ) ~ .  The inviscid fluxes are 

F =  G =  , H =  

Here p is the density; the velocity is 
energy defined as 

= ui + wj + wk; p is the pressure, and E the total internal 

p V . V  
E = p e + -  + p k ,  2 (3) 

where e is the integral energy. The source term Q has non-zero components, which will be given later, 
only for turbulence equations. The viscous fluxes are 



ROE’S FLUX-DIFFERENCE SPLITTING 1019 

F,, = 

ak 
p k  ax 

a& 
pEax 

H, = 

, G, = 

Boussinesq’s approximation 

where pT is a turbulent viscosity coefficient, is applied for the Reynolds stresses. In the momentum and 
energy equations the kinetic energy contribution has been connected with pressure and appears in the 
convective fluxes, whereas the diffusive part is connected with the viscous fluxes. The heat flux is 
written as 

where k is a molecular and kT a turbulent thermal conductivity coefficient and Pr is a laminar and PrT 
a turbulent Prandtl number respectively. In this study Pr = 0.72 and PrT = 0.9 are used. The molecular 
viscosity p is calculated from Sutherland’s formula. The diffusion of turbulence variables is modelled 
as 

where ck and 6, are empirical coefficients. The pressure is calculated from the,perfect gas law 

P = (Y - l)pe, (9) 
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where y is the ratio of specific heats cJcv 
The equations are scaled with free-stream speed of sound cm, density pm, temperature T,, viscosity 

pa, and reference length L,. In particular, the* non-dimensionalized kinetic energy and dissipation of 
turbulence are expressed as k* = k / c L  and E = E/(cL/L,). The present scaling retains the form of 
the inviscid fluxes, whereas the stress terms have to be multiplied by Ma,lRe, and the non- 
dimensionalized heat flux term becomes 

Here, and in the following, scaled variables are used and the superscripts have been dropped for 
simplicity. 

2.2. Turbulence modelling 

In this study the solution is extended to the wall instead of using a wall-function approach. Near the 
wall the low-Reynolds number model proposed by Chien' is adopted. The source term for Chien's 
model is given as 

Ma, k 
Re,  ' 2  P - pE - 2- 

k k Re ,  2 
E PE' Ma, /* - E e - Y + / 2  

c1 - P - c 2 - - 2 -  

where yn is the normal distance from the wall, and y+ is calculated from 

The wall quantities are taken from the first cell above the wall surface. 
The product of turbulent kinetic energy is modelled using (5) as 

which can be rewritten in the following non-dimensionalized form 

P = 5 p T ( 2 ( ( g ) 2 + ( ; ) 2 + ( g ) 2 ]  Re ,  + (;+;)' 

+ + + -  
where (u, v, w )  = (u, ,  u2, ug), (x, y, z) = (xl, x2, xg) and V = ui + vj + wk. Above, the production 
term is non-dimensionalized as P* = P/(p,cL/L,). 

In the k-E model the turbulent viscosity is calculated from 

pk2  Re, 
E Ma, 

pT = cp---. 
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The formulae given above contain empirical coefficients. These are given by 

where the turbulence Reynolds number is defined as 

Chien proposed slightly different forms for cl and c2. Since the computations performed for the flat 
plate boundary layer appeared to be insensitive to the modifications, the formulae above were based on 
the most commonly used coefficients c1 = 1.44 and c2 = 1.92. 

2.3. Spatial discretization 

form 
In the present solution, a finite-volume technique is applied. The flow equations have an integral 

UdV+ )?(.).."=I QdV dY Js V 

for an arbitrary fixed region V with a boundary S. Performing the integrations for a computational cell i 
yields 

where the sum is taken over the faces of the computational cell. The flux on the cell face is 

1;. = n,F + nyG + n,H. (19) 

Here F, G and H are the fluxes defined by (2)-(4), and n,, n,, n2 are the components of the unit normal 
vector in the x-, y- and z-directions respectively. In the evaluation of the inviscid fluxes Roe's method6 
is employed. The flux is calculated as 

1;. = T-'F(Tu), (20) 

where T is a rotation matrix which transforms the dependent variables to a local co-ordinate system 
normal to the cell surface. In this way only the Cartesian form F of the flux is needed. This is calculated 
from 

where U' and U' are the solution vectors evaluated on the left and right sides of the cell surface, r(k' is a 
right eigenvector of the Jacobian matrix A = aF/aU= RAR- ', the corresponding eigenvalue is A(k), and 
a(k) is the corresponding characteristic variable obtained from R-'AU; where A U =  U' - U'. A 
MUSCL-type approach has been adopted for the evaluation of U' and U'. In the evaluation of U' and 
U', primary flow variables (p, u, v, w, p), and conservative turbulent variables (pk, p ~ )  are utilized. 

In this case the eigenvalues, i.e. the characteristic speeds, are 

lI,i,'j, 4 , 5 , 6 , 7  = u, u + c, u,  u? - c,  u, u, (22) 

where c is the speed of sound. The k-& model introduces a coupling between the flow equations and 
turbulence equations via the (2pk/3) term in the momentum and energy equations.' This coupling 
changes the formulae for r(k), A(k) ,  and dk). In the present study the (2pk/3) term is taken into account, 



1022 T. SIIKONEN 

although its effect may be small in most flow cases. If the (2pM3) term were neglected fiom the 
eigenvector analysis, k would be centrally differenced in the inviscid part of the momentum and energy 
equations. In that case there would be a possibility for a 'sawtooth'-like solutions, especially when 
(2pki3) is significant in comparison with pressure. It should also be noted that the damping term of 
(21) is evidently in many ways unnecessarily complicated, at least with low Mach-numbers. 
Fortunately, this complexity is not too expensive in computational terms, thus there is no actual need 
for simplifications. 

By taking into account the contribution of turbulence, the speed of sound can be written for an 
arbitrary equation of state as 

With a perfect gas assumption this reduces to 

c2 = -[p Y + $ p k ] .  
P 

The characteristic variables are 

1 
2c2 

a(*) = - ('kdp + ~ C S U  + Sp + $pSk), 

a(3) = pSv, 

a(4) = pbw, 

a(5) = - (;kSp - ~ C S U  + Sp + SpSk), 
1 

2 3  

pdk,  = 

a(') = PdE, 

and the right eigenvector matrix is 

R =  

1 1 0 0  1 0 0 '  

U u + c  0 0 u - c  0 0 

V v 1 0  v 0 0 

W w 0 1  w 0 0 

h+uc v w h - u c  1 - - -  2 p  0 P 2  
a P / k  3 appe  h - -  

k k 0 0  k 1 0 

E E 0 0  E 0 1 

For a perfect gas ap/& = (y - 1)p. The total enthalpy is defined as 

h = (E  + p ) / p  + Sk. 
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2.4. Calculation of the viscous fluxes and the source term 

For example, in the calculation of P, the velocity derivatives are approximated in the i-direction as 
The viscous fluxes as well as the drivatives in (14) are evaluated using a thin-layer approximation. 

(28) 
(Snxu)j+1/2 - (Snxu)j-1/2 (nxu)i+l/2 - (nxu)i-1/2 

!25 G>i= K di 

where di is the cell thickness in the i-direction. Velocities at the cell surfaces are obtained as averages 
from the nodal values. Using the thin-layer approximation a lot of complexity in programming is 
avoided and computation time is saved. With a high Reynolds number the results obtained by the thin- 
layer approximation are practically the same as with a more accurate computation of the derivatives. In 
the computer code, the thin-layer model can be activated in desired co-ordinate directions. For the 
derivatives in the viscous fluxes on the surface i +  1/2, (28) is applied for a shifted control volume 

The source term and the possible wall correction in cF are calculated similarly in the i-, j- and k- 
directions. As a result, the source term may contain several wall terms, and the wall correction of 
turbulent viscosity is different in different coordinate directions if walls are present. 

v i , l / 2 .  

2.5. Boundaly conditions 

At the free-stream boundary the values of the dependent variables are kept as constants. In the 
calculation of the inviscid fluxes at the solid boundary, flux-difference splitting is not used. Since the 
convective speed is equal to zero on the solid surfaces, the only contribution to the inviscid surface 
fluxes arises from the pressure terms in the momentum equations. A second-order extrapolation from 
the flow field is applied for the evaluation of the wall pressure. 

The viscous fluxes on the solid surfaces are obtained by setting u = v = w = 0 on the wall. The 
central expression of the viscous terms is replaced by a second-order one-sided formula. The wall 
temperature is either set to a free-stream stagnation temperature or the wall is assumed to be adiabatic. 
The viscous fluxes of k and E are also set to zero at the wall. In this way, there is no need to specify the 
surface values of the turbulence quantities. 

2.6. Solution algorithm 

The discretized equations are integrated in time by applying the DDADI-factorization.’ This is 
based on the approximate factorization and on the splitting of the Jacobians of the flux terms. The 
resulting implicit stage consists of a backward and forward sweep in every coordinate direction. The 
sweeps are based on a first-order upwind differencing. In addition, the linearization of the source term 
is factored out of the spatial sweeps. The boundary conditions are treated explicitly, and a spatially 
varying time step is utilized. 

The implicit stage can be written after factorization as follows 

(29) 
At 

x I + -(a,Sk+1/2Ck+ - alSk-1/2CL) [ I  - AtDjlAUi = - 9 i  [ ;: 1 yi 

where a , ,  and a$,k are first-order backward and forward spatial difference operators in the i, j and k 
directions, A, B and C are the corresponding Jacobian matrices, D = aQ/aQ and .% is the right-hand 
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side of (18). The Jacobians are calculated as 

A* = R(I A* I +W)R-', 

where A' are diagonal matrices containing the positive and negative eigenvalues and k is a factor to 
ensure the stability of the viscous term. The idea of the diagonally dominant factorization is to put as 
much weight on the diagonal as possible. In the i-direction the tridiagonal equation set resulting from 
(29) is replaced by two bidiagonal sweeps and a matrix multiplication 

(V; + AtS;+lplAli)AUi - AtSi-1,2ALlAUi-1 = ViAU:, 

Similar sweeps are performed in thej- and k-directions. Some computation time is saved by using the 
primitive variables instead of the conservative variables during the spatial sweeps. 

The matrix inversion resulting from the source-term linearization is performed before the spatial 
sweeps. Several forms have been suggested for the Jacobian matrix D. To improve stability, only 
negative source terms can be linearized. Although the form of the source term indicates that equations 
may become stiff near the walls, the terms related to the walls are not linearized here. Thus, the only 
contribution arises from the dissipation terms of (1 1). As in Reference 9 the dissipation is written in the 
k-equation as 

Since the production term is positive, its linearization is not possible. However, there is a strong 
coupling between the flow field, turbulent viscosity and the production term P. The stiffness caused by 
the production term can be reduced by using the following pseudolinearization 

The idea of this is to limit the maximum change of U caused by P to I AUma I . The resulting Jacobian 
of the source term is 

The maximum changes I AUmX I are evaluated using the current values of pk and PE as 

lA(pk>,l = pk/Ck, IA(pE),-,,al = P&/C&. (35) 
Since the turbulent viscosity is twice as sensitive to changes of k as to changes of E ,  in the present study 
C, was set to 5 ,  and Ck = 2C,. 

With an algebraic turbulence model the scheme is stable with Courant numbers of O( 10). When the 
flow is fully turbulent, the application of the k-E model does not essentially reduce the stability limit. 
However, there is a fundamental difficulty in the simulation of external flows, where large regions of 
laminar flow are connected with turbulent regions near the flying vehicle and the wake. The values of 
the turbulence quantities may vary by orders of magnitude within a short distance. Occasionally, a tiny 
change Ak may be much larger than the current value of k, and it is possible that a physically 
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unrealistically large value of pT would result if E did not increase correspondingly. Since this cannot be 
guaranteed, some further limitations either in p T  or in turbulence quantities is necessary. After the 
implicit sweeps Apk is limited to 1/6 and APE to 1/3 of their current values. This limitation does not 
significantly slow down the convergence rate. It should be noted that the robustness could also be 
increased by using larger values for k and E in the free-stream. To guarantee physically reasonable 
values during the iteration, the maximum size of p~ was also limited. In the present test cases the 
specified upper limit of pT was so high that the steady state results are not affected by the limitation. 

For the acceleration of convergence, a multigrid cycling is employed. The method of Jameson" with 
a simple V-cycle has been adopted. The spatial discretization applied on the coarse grid levels is of the 
first order, which improves the stability and allows the use of a larger CFL-number on those grid 
levels. The basic implementation of the multigrid cycling is described in Reference 8 and is not 
changed because of the implementation of the k-6 model. However, some modifications are needed for 
stability reasons. The modifications concern the interpolation of k and E corrections from a coarse grid 
level to a finer level, and the evaluation of the turbulent viscosity. Firstly, the size of the corrections was 
limited similarly to those in the basic time integration scheme, i.e. the interpolated Apk was limited to 
1/6 and APE to 1/3 of their current values. In the airfoil calculations it was observed that the explicit 
treatment of the wake cut always caused troubles with the multigrid. Because of this, on the finer grid 
levels the corrections of the turbulence quantities are not interpolated to the first row of cells next to the 
grid boundaries. This treatment improves the stability, but has only a minor effect on the speed of 
convergence. 

In transonic test calculations, the solution always finally blew up when the multigrid method was 
applied. This situation can be improved if on the coarse grid levels the turbulent viscosity is not 
calculated. Since pris a non-linear function of the turbulence quantities and the shape of the boundary 
layer, the resulting turbulent vicosities on the coarser grid level may differ considerably from those 
evaluated on the fine grid level. To circumvent this, the turbulent viscosities were only calculated on 
the finest grid level and those values were transferred to the coarser grids. This procedure is of essential 
importance for the robustness of the multigrid cycle, and has no effect on the final result or the 
convergence. 

3. COMPUTATIONAL RESULTS 

3.1. Flow over a flat plate 

The near-wall behaviour of the turbulence model was checked by calculating a flat plate boundary 
layer. The results were compared with Klebanoff's experiments." The measured data is at 
Rex=4.2 x lo6, where the corresponding boundary layer thickness is 0.0762 m. In the experiment 
the true distance from the leading edge of the plate was shorter, but a thickening of the boundary layer 
was achieved by covering the first 2 feet of the plate with sand roughness consisting of No. 16 floor- 
sanding paper. In this way the distance from the virtual origin was 4.328 m. In the experiment the free- 
stream speed was 50 feet per second. The calculations were performed at Ma, = 0.2 to guarantee 
convergence. 

The computational domain was extended to cover the flat plate from the virtual origin to x = 4.453. 
The grid size was 48 x 48. The height of the first row of cells was 7 x and the grid was heavily 
clustered near the wall. In the axial direction the grid was clustered near the origin. From x = 0.453 to 
x = 4.453 a constant grid spacing of 0.125 was used. As a boundary condition, constant distributions 
were given for the flow and for the turbulence quantities. The turbulence intensity, defined as 
k/(3/2pm&), was assumed to be 0.01 and the dissipation of the turbulence was calculated by 
assuming pr = 0. I at the free-stream. The free-stream conditions were also used as initial conditions. It 
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Figure 1, L2-norm of the density residual 

is difficult to specify the inlet boundary conditions according to the experiment. The wind tunnel 
turbulence level was lower than the value used in the simulation, but in the experiment the flow 
conditions were distorted because of the surface roughness at the leading edge. In spite of the evident 
uncertainty, no attempt was made to tune the inlet boundary conditions according to the computed 
results. 

In this case the Courant number was 10 and three multigrid levels were applied. The convergence of 
the Lz-norm of the density residual is shown in Figure 1. In spite of the multigrid acceleration, the 
convergence is slower than with an algebraic turbulence model. With an algebraic model, turbulent 
viscosity is based on the local conditions; in the present case k and E are convected throughout the 
domain, which is a slow process. This is evidently caused by the small time steps required by stability 
inside the boundary layer. Nevertheless, the convergence is significantly improved because of the 
multigrid. A single grid calculation required more than 10 000 iteration cycles to converge. 

The distribution of the friction coefficient is shown in Figure 2. It is seen that with the specified 
boundary conditions there is a transition at about x = 0.1. At Re, = 4.2 x lo6 the calculated friction 
coefficient is 2.945 x lo-’, whereas the experimental value is 2.81 x lo-’. The agreement between 
the calculation and the experiment is fairly good in spite of the fact that the boundary conditions are 
not accurately specified. The calculated friction coefficient is also compared with a theoretical 
formula.” 

where UI is the free-stream velocity and the boundary layer thickness 6 is calculated from 
Y A 6 = 0.383- 

(Re,)’” ’ 
(37) 

The kinetic energy of turbulence at stations Re,=3.05 x lo6 and Re,=4.2 x lo6 is shown in 
Figure 3. The prediction is on a somewhat lower level than the experimental data, which may be caused 
by the inaccuracy in boundary conditions. The velocity profiles are compared in Figures 4 and 5. It is 
seen that the calculated profile obeys the logarithmic law, but the comparison with the measured 
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E 

velocity profile is not completely satisfactory. The calculated turbulence quantities as a function of y+ 
are shown in Figures 6-8. The parameters of the turbulence model have some effect on the calculated 
results. Some modifications improved the kinetic energy profile, but the velocity profile became worse. 
The key parameter for the good agreement with the logarithmic law is cp, especially the exponent 
-0.01 15y+. If the amplifier of y+ in the exponent is modified slightly, say by lo%, the calculated 
velocity profile is no longer in accordance with the logarithmic law. 

3.2. Transonicjow over the NACA 0012 airfoil 

As the next case, a flow over the NACA 0012 airfoil was calculated at Ma = 0.799, Re = 9 x lo6 
and LY = 2.66". A C-type grid with 192 x 64 cells was used in the simulation. The outer boundary of 
the grid is 20 chord lengths from the airfoil, and the cell thicknesses on the surface varied from 
5 x low6 at the leading edge to 2 x lop5  at the trailing edge. 

As in the flat plate calculation, the transition was not modelled. Transition could be modelled in the 
following way: evidently, a laminar flow is a trivial solution of the present flow model. If the initial 
conditions are 'sufficiently turbulent', there is possibly another solution (or even several solutions), 

Y 

: 

9 c 

x 
0.00 0.02 0.04 0.06 0.08 ( 

Y 
.10 

Figure 3. Kinetic energy as a function of the normal distance 
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Figure 4. Calculated and experimental velocity profiles 

which correspond to turbulent flow. With a suitable initial value distribution, transition can be taken 
into account. The reason for this possibility lies in the parabolic nature of the k- and &-equations: 
turbulence cannot spread in an upstream direction. A more physical way would be the use of suitable 
free-stream values, as was the case with the flat plate boundary layer, and to let the turbulence model 
take care of the transition. However, it is questionable whether the k-E model can be applied for the 
accurate prediction of transition in this way. 

In this case the free-stream values of the turbulence quantities were set to k = 4  x lop8  and 
E =  1 x The effect of the free-stream values on the solution was not studied. The initial 
conditions were k=0.01 and p T =  10. Since constant initial conditions were specified all over the 
computational domain, a hlly turbulent solution was obtained. 

As far as the convergence and stability of the solution are concerned, this appears to be a tough case. 
The simulation was performed with three grid levels at CFL = 2. The difficulties were concentrated on 
the interaction of the shock and boundary layer and on the explicit treatment of the wake cut. The 
devices described in Section 2 improved the situation and a satisfactory convergence was obtained. The 

Figure 5. Comparison of calculated velocity profiles with a logarithmic law 
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Figure 6. Kinetic energy of turbulence as function of yf 

1029 

0.0 100.0 200.0 300.0 400.0 500.0 

PT 

Figure 7. Dissipation of turbulence as a function of yf 
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Figure 8. Turbulent viscosity distribution as a function of y+ 

convergence histories of the lift and drag coefficients are shown in Figures 9 and 10. It can be seen that 
these coefficients are practically converged in 1 500 iteration cycles. 

The Mach-number distribution is shown in Figure 11. This case has also been calculated using an 
algebraic Baldwin-Lomax m0de1.I~ In the present calculations the Baldwin-Lomax model always 
produced a time-dependent result. Because of this the k-& simulation was compared with the steady 

0 400 800 1200 1600 
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Figure 9. Convergence of the lift coefficient 
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Figure 10. Convergence of the drag coefficient 

results obtained by a Cebeci-Smith m0de1.l~ The comparison of the pressure coefficient in Figure 12 
shows some improvement when the k-E model is applied. From the friction coefficient distributions in 
Figure 13 it can be seen that the two solutions are qualitatively different. Both models predict a shock- 
induced separation, but with the k-6 model there is a reattachment, whereas with the Cebeci-Smith 
model the flow remains separated. 

The turbulence quantities as a function of yf are shown at three axial locations in Figures 14-17. 
Location i = 100 is close to the leading edge, i = 125 is just before the shock, i = 150 is near the 
trailing edge and i = 175 is in the wake region. It is apparent that the kinetic energy of turbulence is 

Figure 1 1. Mach number distribution at Ma = 0.799, Re = 9 x 10' 
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Figure 12. Pressure coefficient distribution at Ma = 0.799, Re = 9 x lo6 

increased after the shock location whereas the dissipation is reduced. As a result high turbulent 
viscosities are predicted (Figure 17). 

3.3. TransonicfZow over a delta wing 

To test the performance of the turbulence model in a 3D-case, the flow past a cropped delta wing 
was calculated at Ma,=O.85, Re,=4.5 x lo6 and u =  10.76". The wing selected for these 
calculations is the round leading edge cropped delta wing used in the International Vortex Flow 
Experiment on Euler Code Validation.'' Previously, the flow pattern past this wing has been studied in 
References 16 and 17. 

The grid used in the calculations was a single-block G O  grid with 128 x 48 x 64 cells in the 
chordwise, near-normal and spanwise directions respectively. The outer boundary of the grid is a 
sphere centred at the middle of the root chord with a radius of lOc,. The reference point for the 
pitching moment calculation is x = 0.57c,, and the reference length for the moment calculation is the 
root chord c,. 

n 
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Figure 13. Friction coefficient distribution at Ma = 0.799, Re = 9 x lo6 
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Figure 14. Kinetic energy of turbulence at three axial stations at Mu = 0.799, Re = 9 x 1 O6 
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Figure 15. Dissipation of turbulence at three axial stations at Mu = 0.799, Re = 9 x lo6 
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Figure 16. Dissipation of turbulence at three axial stations at Ma = 0.799, Re = 9 x lo6 

Figure 17. Turbulent viscosity at three axial stations at Ma = 0.799, Re = 9 x lo6 
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Figure 18. Profiles of kinetic energy of turbulence at 2ylb = 0.27 

As in the previous cases, the effect of the free-stream values on the solution was not studied. The 
free-stream values of the turbulence quantities were set to k= 4 x and E = 1 x lo-'. The initial 
conditions were k=0.38 x and pT= 1. The initial conditions correspond to a turbulence 
intensity of 0.005. 

The calculated turbulence quantities in a spanwise cross-section 2ylb = 0.27, where b is the wing 
span, are shown in Figures 18-20. The first station from which data is taken, i = 68, is right behind the 
leading edge on the upper surface, and i =  88 is at ( x / c ) ~ o c ~ ~ O o . 3 7 .  The turbulence kinetic energy is 
shown in Figure 19. A distinct peak after i = 76 is seen to develop owing to the turbulence generation 
caused by the primary vortex. The turbulent viscosity distributions in Figure 20 form a set of almost 

1s 

Figure 19. Profiles of dissipation of turbulence at 2ylb = 0.27 
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Figure 20. Turbulent viscosity profiles at 2y/b = 0.27 

Figure 21. Pressure coefficient distribution on the upper surface of the delta wing 

Figure 22. Surface streamlines on the upper surface of the delta wing 

similar curves except for the station i=68, where the turbulent viscosity has a low value. By 
comparing the turbulence kinetic energy profiles and pT profiles, it can be seen that on the outer edge 
of the boundary layer, where k approaches the free-stream value, which is practically zero in this case, 
turbulent viscosity has a spurious second maximum. This is caused by the fact that the dissipation of 
turbulence approaches its free-stream value faster than k. The behaviour of pT on the edge of the 
boundary layer is not correct, but its effect on the flow field was assumed to be small, since the velocity 
gradient is small outside the boundary layer. The clearly unphysical behaviour of pT could be corrected 
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Figure 23. Pressure coefficient distributions at Re = 4.5 x lo6, a = 10.76" using k-E model, laminar flow assumption and the 
Cebeci-Smith model": (a) x/c, = 0.3, (b) x/c, = 0.6, and (c) x/c, = 0.8. The experimental results are from Reference 15 

by adding a suitable constant to the denominator of (1 5). A better way is to establish an appropriate 
treatment for the free-stream values of the turbulence quantities. 

The pressure coefficient distribution on the upper surface of the wing is shown in Figure 21, and 
Figure 22 shows surface streamlines on the upper surface. Compared with the results in Reference 17, 
the vortex is wider than that obtained using the Cebeci-Smith model. Only one vortex is formed, 
whereas the results in Reference 17 showed also a clear secondary separation line with the associated 
secondary vortex. 

In Figure 23 the calculated and experimental pressure coefficient distributions at cross sections 
xIc,=O.3, 0.6 and 0.8 are compared. The comparison confirms the conclusion made according to 
Figures 21 and 22. The suction peak is smeared mainly due to high turbulent viscosities inside the 
primary vortex. The quality of the k-E result seems to be poor in comparison with the laminar or 
Cebeci-Smith prediction. On the other hand, it should be noted that the quantitative difference between 
the experimental data and the Cebeci-Smith simulation is larger than the corresponding difference 
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Figure 24. Convergence of the lift ,  drag and pitching moment coefficients using a single gnd 

between the data and k-e results. Probably the results of both simulations could be improved if 
transition were taken into account. 

This case was calculated twice: first using only a single grid, and for a comparison of convergence 
the second calculation was performed using three grid multigrid levels. The Courant number was 1 .O in 
both calculations. Using only one grid level, approximately 5 000 iteration cycles were required to 
obtain a sufficiently converged result, whereas with three multigrid levels a sufficiently converged 
result was obtained within 1 000 cycles. The convergence history of the aerodynamic coefficients 
using a single grid is given in Figure 24. The convergence of the coefficients reveals a typical feature 
for the present flow case: the flow is oscillatory and actually no steady state could be obtained. After 
about 5 000 cycles the monitored turbulence quantities were almost frozen and the computation was 
stopped. 

4. CONCLUSIONS 

The Reynolds-averaged Navier-Stokes equations with a low-Reynolds number k-e turbulence model 
have been solved using an implicit method with a multigrid acceleration for convergence. In the 
evaluation of fluxes the turbulence equations are coupled with the inviscid part of the flow equations in 
the eigenvector analysis utilized with Roe's method. The effect of this complete coupling was not 
studied, but is probably small in the present test cases. The implicit stage is based on the approximate 
factorization, and the source term of the turbulence equations is factored out of the spatial sweeps. A 
few limitations were added into the original scheme because of the k-E turbulence model. With these 
limitations, the stability properties of the scheme with the k-e model are about the same as in the case 
of an algebraic turbulence model. 

In the multigrid cycle the turbulent viscosities on the coarse grid levels are interpolated from the 
densest level. This treatment is essential for the robustness of the multigrid method. In addition, similar 
limitations, as in the case of the implicit stage, are applied for the correction of the turbulence variables 
inside the multigrid cycle. When the multigrid is used the convergence is significantly enhanced. 
However, in spite of all the remedies, in some cases the multigrid method cannot be applied or at least 
the number of grid levels has to be reduced from the maximum possible. It should be noted that 
sometimes this reduction has to be made in tough cases, even with an algebraic model. 
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The overall conclusion is that with the k-E model, convergence is slower than with an algebraic 
model. This is probably caused by the slow development of the turbulence quantities and the resulting 
turbulent viscosity. The convergence and the solution are influenced by the initial conditions. Turbulent 
initial conditions can be used to speed up the convergence. As a result, a fully turbulent solution is 
obtained. With laminar initial conditions, together with turbulent free-stream conditions, a turbulent 
solution is also obtained, but the number of iteration cycles is much higher than with suitably chosen 
initial conditions. If, in addition to the initial conditions, the free-stream conditions correspond to 
laminar flow, the solution remains laminar, since the model does not contain any device to generate 
turbulence from a totally laminar flow. 

The k-E model was applied for three test cases. A simple boundary layer is fairly well predicted with 
the present model. Some improvement was obtained in the case of a 2D transonic airfoil calculation in 
comparison with an algebraic turbulence model. However, in the case of the delta wing, the results 
were worse than with algebraic models. The effect of the free-stream values on the turbulence 
quantities was not evaluated in this study. Proper free-stream conditions may have a large effect on the 
results and also on the robustness of the algorithm, since many difficulties originate in the region 
between the turbulent boundary layer and the essentially laminar free-stream. The transition was not 
taken into account in any of the present test cases. It seems that the treatment of transition is difficult 
with the k-E model. This may limit the applicability of the model as well as the applicability of the 
algebraic Reynolds stress model in aerodynamic simulations. 
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